
hermes_nemisis
Release 0.2.1.dev6+gd81fafe

The HERMES Team

Apr 10, 2024

CONTENTS

1 Acknowledging this Package 3
1.1 Citing in Publications . 3

2 Release History 5
2.1 Full Changelog . 5

3 Calibration and Measurement Algorithm Document (CMAD) 7
3.1 Scope . 7
3.2 Related Documentations . 7
3.3 Overview and Background Information . 7
3.4 Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) Calibration Plan 9
3.5 Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) Measurement

Algorithm Description . 10

4 User’s Guide 11
4.1 A Brief Tour . 11
4.2 Data . 11
4.3 Customization and Global Configuration . 12
4.4 Logging system . 13

5 Developer’s Guide 15
5.1 Developer Environment . 15
5.2 Coding Standards . 15
5.3 Testing Guidelines . 15
5.4 Documentation Rules . 16
5.5 Workflow for Maintainers . 18
5.6 Global Settings . 21

6 API Reference 23
6.1 hermes_nemisis Package . 23
6.2 hermes_nemisis.calibration.calibration Module . 23
6.3 hermes_nemisis.io.file_tools Module . 26

Python Module Index 27

Index 29

i

ii

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

This is the documentation for the hermes_nemisis Python package for processing and analyzing data from the Noise
Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) on the Lunar Gateway.

CONTENTS 1

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

2 CONTENTS

CHAPTER

ONE

ACKNOWLEDGING THIS PACKAGE

If you use this package in your scientific work, we would appreciate citing it in your publications. Proper citations and
acknowledgement is key to a healthy scientific community and enables scientific reproducibility.

1.1 Citing in Publications

Please add the following line within your methods, conclusion or acknowledgements sections:

This research used version X.Y.Z (software citation) of the Hermes Instrument open source software pack-
age (paper citation).

The software citation should be the specific Zenodo DOI for the version used in your work. A paper citation does not
yet exist.

3

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

4 Chapter 1. Acknowledging this Package

CHAPTER

TWO

RELEASE HISTORY

2.1 Full Changelog

5

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

6 Chapter 2. Release History

CHAPTER

THREE

CALIBRATION AND MEASUREMENT ALGORITHM DOCUMENT
(CMAD)

3.1 Scope

This section provides a brief description of the specific aspects of instrument calibration covered by this plan

3.2 Related Documentations

3.2.1 Applicable Documents

This section identifies (in tabular format) any other project/mission documentation with higher- level guiding require-
ments or that provide more detail or context. See example below:

Title Document Num-
ber

Publication Date

Heliophysics Division Science Data Man-
agement Policy

HPD-SDMP 14 Feb 2022

HERMES Project Level Requirement Ap-
pendix (PLRA)

HERMES-SYS-
REQ-0027

13 Oct 2021

HERMES Project Data Management Plan
(PDMP)

HERMES-MGMT-
PLAN-0015

7 Oct 2021

3.3 Overview and Background Information

This section briefly summarizes the instrument and its objectives to provide its role and importance within the context
of the SMD portfolio.

7

https://science.nasa.gov/science-pink/s3fs-public/atoms/files/HPD%20Data%20Policy_Final_20220209.pdf
https://science.nasa.gov/science-pink/s3fs-public/atoms/files/HPD%20Data%20Policy_Final_20220209.pdf
https://github.com/HERMES-SOC/hermes-pdmp
https://github.com/HERMES-SOC/hermes-pdmp

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

3.3.1 Science Objectives

This section describes the science objective(s) of the mission.

3.3.2 Noise Eliminating Magnetometer Instrument in a Small Integrated System (NE-
MISIS) Instrument Description

3.3.3 Measurement Concept

This subsection summarizes the instrument parameters and associated requirements that must be fulfilled to attain
mission success. The types of measurements or observations made as well as how the instrument executes those
measurements are described. A table like the example below may be included.

Param-
eter

Minimum Success Criteria Comprehensive Suc-
cess Criteria

Design
Goals

Wave-
length 𝜆

6 or more emissions to specify the chromosphere, TR, and
corona, plus the He II 30.4 nm emission

0.1-105 nm 0.1-105
nm

Time
Cadence

60 sec < 20 sec 10 sec

3.3.4 Instrument Subsystem Descriptions

<Subsystem name>

This section (and any necessary subsections) provides details on the susbsystems or components responsible for di-
rectly obtaining the measurements or observations pertinent to the instrument. Details on the layout and design of the
subsystem, examples of expected measurements, and interactions with any other subsystems should be provided.

<Instrument name> Heritage

Subsystem Heritage

This section summarizes any heritage from past missions for the instrument and its subsystems or components (e.g.,
detectors, cameras, signal processing electronics).

Algorithm and Calibration Heritage

This section identifies any heritage from past missions for the algorithms used to process/convert detector signals into
the measurable quantities needed to meet the science requirements.

8 Chapter 3. Calibration and Measurement Algorithm Document (CMAD)

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

3.4 Noise Eliminating Magnetometer Instrument in a Small Integrated
System (NEMISIS) Calibration Plan

3.4.1 Overall Calibration Scheme

This section summarizes the calibration philosophy and identifies any heritage tied to the calibration schemes of related
missions and instruments.

3.4.2 Pre-flight Calibration Plans

This section details how unit level (e.g., individual detectors) and system level (e.g., instrument subsystem) are tested
and calibrated to verify that they will meet the expected performance parameters prior to placement (i.e., launch) into
the relevant operational environment.

<Subsystem name> Pre-flight Calibrations

This subsection describes the specific testing and examination methods used to characterize the build and performance
of each subsystem or component (e.g., diffraction gratings, CCDs)

3.4.3 Instrument Description

This subsection describes the primary scientific objectives of the instrument, its hardware, physical configuration, etc.
This subsection lists the major elements of the instrument and provides a schematic of the conceptual design. Known
issues due to external factors that could impact any long-term comparison or analysis (e.g., optical distortion due to
gradual radiation degradation) should be captured.

3.4.4 In-flight Tracking of Short-Term Changes

This section identifies any potential factors in the operational environment (e.g., radiation, temperature fluctuations,
exposure-related degradation) that could eventually result in off- nominal changes in the instrument’s measurements.
The methods used to identify and track these changes are also described.

3.4.5 Long-term Absolute Calibration Tracking (Re-Calibration)

This section identifies any periodic re-calibration to absolute standards to be used over the course of the mission.

3.4.6 Validation

This describes the use of any other measurements (via complementary instruments) or models to validate the instru-
ment’s measurements

3.4. Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS)
Calibration Plan

9

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

3.5 Noise Eliminating Magnetometer Instrument in a Small Integrated
System (NEMISIS) Measurement Algorithm Description

3.5.1 Theoretical basis

This section provides context and background information for the quantity or phenomenon being detected. The algo-
rithms and techniques used are described, with pertinent equations and references included. Logical groupings (i.e.,
separate subsections) may be used for clarity of the concepts introduced.

3.5.2 Conversion of Instrument Signals to <Measurable units>

Measurement Equations

This subsection (one for each subsystem) describes the equations used to derive measurable quantities from raw instru-
ment signals.

3.5.3 Signal Estimates and Error Analyses for Subsystems

<Subsystem name> Signal Estimates and Error Analysis

This subsection (one for each subsystem) provides details on the expected signal values for the instrument subsystem.
This can be expressed graphically. A table summarizing the “acceptable” values—that is, the minimum values that
would meet mission requirements and be deemed still usable to meet the mission’s science objectives—as well as the
estimated uncertainty in the measured values and the error budget allowable for each parameter may be included. The
equations for determining the uncertainties should be included.

3.5.4 Preflight Calibration Algorithms

This section describes the process for calibrating the instrument prior to shipment and/or installation. It may refer back
to measurement equations detailed earlier in the document and identify the specific variables being solved for in order
to determine proper calibration.

3.5.5 Appendix A. List of Variable Definitions

10 Chapter 3. Calibration and Measurement Algorithm Document (CMAD)

CHAPTER

FOUR

USER’S GUIDE

Welcome to our User guide. For more details checkout the API Reference.

4.1 A Brief Tour

Insert a tour here.

4.2 Data

4.2.1 Overview

Data Description

Level Product Description
1 Vector Magnetic Field from 3 sen-

sors (M0, M1, M2) in spacecraft co-
ordinates

CCSDS, each packet is 4-sec long
at 10 Hz rate, 3-axis magnetic field
components for all three sensors
in coordinate system native to the
HERMES Payload

1 Sensor Temperatures Temperatures at M0, M1, M2
2 Vector Magnetic Field from 3 sen-

sors (M0, M1, M2) in GSE coordi-
nates

3d vector magnetic fields (Bx, By,
Bz) in nT for each magnetometer
(M0, M1, M2) using final calibra-
tions for offsets and gains

2 Sensor Temperatures Final calibrated temperatures
3 Magnetic field at Gateway Background-subtracted and pro-

cessed 3d vector magnetic field (Bx,
By, Bz) in nT in a common coordi-
nate system (e.g. GSE). Derived by
combining individual sensor data.

QL
Vector Magnetic Field from 3
sensors (M0, M1, M2)

in GSE coordinates (Unvali-
dated)

Despiked values for 3d vector mag-
netic fields (Bx, By, Bz) in nT for
each magnetometer (M0, M1, M2)
in their local coordinate system, plus
temperatures in Celsius for each sen-
sor. (and time-corrected and time-
checked)

11

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

4.2.2 Getting Data

4.2.3 Reading Data

4.2.4 Calibrating Data

Data products below level 2 generally require calibration to be transformed into scientificically useable units. This
section describes how to calibrate data files from lower to higher levels.

4.3 Customization and Global Configuration

4.3.1 The configrc file

This package uses a configrc configuration file to customize certain properties. You can control a number of key
features such as where your data will download to. This configuration file in a platform specific directory, which you
can see the path for by running:

>>> import hermes_nemisis
>>> hermes_nemisis.print_config()

To maintain your own customizations place a copy of the default file into the first path printed above. Do not edit the
default file directly as every time you install or update, this file will be overwritten.

See below for the example config file.

4.3.2 Dynamic settings

You can also dynamically change the default settings in a Python script or interactively from the python shell. All of the
settings are stored in a Python ConfigParser instance called sunpy.config, which is global to the package. Settings
can be modified directly, for example:

import hermes_nemisis
hermes_nemisis.config.set('downloads', 'download_dir', '/home/user/Downloads')

A sample configrc file

;
; Configuration
;
; This is the default configuration file

;;;;;;;;;;;;;;;;;;;
; General Options ;
;;;;;;;;;;;;;;;;;;;
[general]

; Time Format to be used for displaying time in output (e.g. graphs)
; The default time format is based on ISO8601 (replacing the T with space)
; note that the extra '%'s are escape characters

(continues on next page)

12 Chapter 4. User’s Guide

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

(continued from previous page)

time_format = %Y-%m-%d %H:%M:%S

;;;;;;;;;;;;;
; Downloads ;
;;;;;;;;;;;;;
[downloads]

; Location to save download data to. Path should be specified relative to the
; SunPy working directory.
; Default value: data/
download_dir = data

4.4 Logging system

4.4.1 Overview

The logging system is an adapted version of AstropyLogger. Its purpose is to provide users the ability to decide
which log and warning messages to show, to capture them, and to send them to a file.

All messages use this logging facility which is based on the Python logging module rather than print statements.

For more information on this system see the documentation in hermes-core.

which will save the messages to a local file called myfile.log.

4.4. Logging system 13

https://docs.astropy.org/en/stable/api/astropy.logger.AstropyLogger.html#astropy.logger.AstropyLogger
https://docs.python.org/3/library/logging.html#module-logging

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

14 Chapter 4. User’s Guide

CHAPTER

FIVE

DEVELOPER’S GUIDE

This article describes the guidelines to be followed by developers working on this repository. If you are planning on
contributing to this repository please read the following carefully. This guide borrows heavily from the one developed
by the SunPy Project. It is consistent with the standards recommended by the Python in Heliophysics (PyHC).

The guidelines are

5.1 Developer Environment

This Python package is used in the pipeline processing of scientific data from HERMES. Special consideration is
therefore required to ensure that development is compatible with the pipeline environment. It is also important to
ensure that this package is compatible with a user’s systems such as a mac and windows.

See the parent package for the documentation.

5.2 Coding Standards

The purpose of the page is to describe the standards that are expected of all the code in this repository. All developers
should read and abide by the following standards. Code which does not follow these standards closely will generally
not be accepted.

The projects coding standards are documented in HERMES-core.

The following standards are specific to this repository.

5.2.1 HERMES Instrument Standards

insert instrument specific standards here.

5.3 Testing Guidelines

This section describes the testing framework and format standards for tests. Here we have heavily adapted the Astropy
version, and it is worth reading that link.

The testing framework used by sunpy is the pytest framework, accessed through the pytest command.

Note: The pytest project was formerly called py.test, and you may see the two spellings used interchangeably.

15

https://github.com/heliophysicsPy/standards/blob/main/standards.md
https://heliopython.org/
https://hermes-core.readthedocs.io/en/latest/dev-guide/dev_env.html
https://hermes-core.readthedocs.io/en/latest/dev-guide/code_standards.html
https://docs.astropy.org/en/latest/development/testguide.html
https://docs.astropy.org/en/latest/development/testguide.html
https://pytest.org/en/latest/

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

5.3.1 Writing tests

pytest has the following test discovery rules:

* ``test_*.py`` or ``*_test.py`` files
* ``Test`` prefixed classes (without an ``__init__`` method)
* ``test_`` prefixed functions and methods

We use the first one for our test files, test_*.py and we suggest that developers follow this.

A rule of thumb for unit testing is to have at least one unit test per public function.

Where to put tests

Each package should include a suite of unit tests, covering as many of the public methods/functions as possible. These
tests should be included inside each package, e.g:

sunpy/map/tests/

“tests” directories should contain an __init__.py file so that the tests can be imported.

doctests

Code examples in the documentation will also be run as tests and this helps to validate that the documentation is
accurate and up to date. We use the same system as Astropy, so for information on writing doctests see the astropy
documentation.

You do not have to do anything extra in order to run any documentation tests. Within our setup.cfg file we have set
default options for pytest, such that you only need to run:

$ pytest <rst to test>

to run any documentation test.

Bugs Testing

In addition to writing unit tests new functionality, it is also a good practice to write a unit test each time a bug is found,
and submit the unit test along with the fix for the problem. This way we can ensure that the bug does not re-emerge at
a later time.

5.4 Documentation Rules

5.4.1 Overview

All code must be documented and we follow the style conventions described here:

• numpydoc

16 Chapter 5. Developer’s Guide

https://pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery
https://docs.astropy.org/en/latest/development/testguide.html#writing-doctests
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

Referring to other code

To link to methods, classes, or modules in your repo you have to use backticks, for example:

`hermes_nemisis.io.read_file`

generates a link like this: hermes_nemisis.io.read_file.

Links can also be generated to external packages via intersphinx:

`numpy.mean`

will return this link: numpy.mean. This works for Python, Numpy and Astropy (full list is in docs/conf.py).

With Sphinx, if you use :func: or :meth:, it will add closing brackets to the link. If you get the wrong pre-qualifier,
it will break the link, so we suggest that you double check if what you are linking is a method or a function.

:class:`numpy.mean()`
:meth:`numpy.mean()`
:func:`numpy.mean()`

will return two broken links (“class” and “meth”) but “func” will work.

Project-specific Rules

• For all RST files, we enforce a one sentence per line rule and ignore the line length.

5.4.2 Sphinx

All of the documentation (like this page) is built by Sphinx, which is a tool especially well-suited for documenting
Python projects. Sphinx works by parsing files written using a a Mediawiki-like syntax called reStructuredText. It can
also parse markdown files. In addition to parsing static files of reStructuredText, Sphinx can also be told to parse code
comments. In fact, in addition to what you are reading right now, the Python documentation was also created using
Sphinx.

Usage and Building the documentation

All of the documentation is contained in the “docs” folder and code documentation strings. Sphinx builds documenta-
tion iteratively, only adding things that have changed. For more information on how to use Sphinx, consult the Sphinx
documentation.

HTML

To build the html documentation locally use the following command, in the docs directory run:

$ make html

This will generate HTML documentation in the “docs/_build/html” directory. You can open the “index.html” file to
browse the final product.

If you’d like to rebuild the documentation from scratch. This is normally not necessary since Sphinx will detect and
only build the required changes. But if you are running into strange errors you may want to try this. The following
command will wipe all generated files.

5.4. Documentation Rules 17

http://www.sphinx-doc.org/en/master/ext/intersphinx.html
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/rst.html
https://www.python.org/doc/
http://www.sphinx-doc.org/en/stable/contents.html
http://www.sphinx-doc.org/en/stable/contents.html

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

$ make clean

Sphinx can also build documentation as a PDF but this requires latex to be installed.

5.5 Workflow for Maintainers

This page is for maintainers who can merge our own or other peoples’ changes into the upstream repository.

Seeing as how you’re a maintainer, you should be completely on top of the basic git workflow in Developer’s Guide
and Astropy’s git workflow.

5.5.1 Integrating changes via the web interface (recommended)

Whenever possible, merge pull requests automatically via the pull request manager on GitHub. Merging should only
be done manually if there is a really good reason to do this!

Make sure that pull requests do not contain a messy history with merges, etc. If this is the case, then follow the manual
instructions, and make sure the fork is rebased to tidy the history before committing.

To check out a particular pull request to test out locally:

$ git checkout pr/999
Branch pr/999 set up to track remote branch pr/999 from upstream.
Switched to a new branch 'pr/999'

When to remove or combine/squash commits

In all cases, be mindful of maintaining a welcoming environment and be helpful with advice, especially for new con-
tributors. It is expected that a maintainer would offer to help a contributor who is a novice git user do any squashing
that that maintainer asks for, or do the squash themselves by directly pushing to the PR branch.

Pull requests must be rebased and at least partially squashed (but not necessarily squashed to a single commit) if large
(approximately >10KB) non-source code files (e.g. images, data files, etc.) are added and then removed or modified in
the PR commit history (The squashing should remove all but the last addition of the file to not use extra space in the
repository).

Combining/squashing commits is encouraged when the number of commits is excessive for the changes made. The
definition of “excessive” is subjective, but in general one should attempt to have individual commits be units of change,
and not include reversions. As a concrete example, for a change affecting < 50 lines of source code and including a
changelog entry, more than a two commits would be excessive. For a larger pull request adding significant functionality,
however, more commits may well be appropriate.

As another guideline, squashing should remove extraneous information but should not be used to remove useful infor-
mation for how a PR was developed. For example, 4 commits that are testing changes and have a commit message of
just “debug” should be squashed. But a series of commit messages that are “Implemented feature X”, “added test for
feature X”, “fixed bugs revealed by tests for feature X” are useful information and should not be squashed away without
reason.

When squashing, extra care should be taken to keep authorship credit to all individuals who provided substantial con-
tribution to the given PR, e.g. only squash commits made by the same author.

18 Chapter 5. Developer’s Guide

https://docs.sunpy.org/en/stable/dev_guide/index.html#newcomers
https://docs.astropy.org/en/stable/development/workflow/development_workflow.html#development-workflow

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

When to rebase

Pull requests must be rebased (but not necessarily squashed to a single commit) if:

• There are commit messages include offensive language or violate the code of conduct (in this case the rebase
must also edit the commit messages)

Pull requests may be rebased (either manually or with the rebase and merge button) if:

• There are conflicts with main

• There are merge commits from upstream/main in the PR commit history (merge commits from PRs to the user’s
fork are fine)

Asking contributors who are new to the project or inexperienced with using git is discouraged, as is maintainers
rebasing these PRs before merge time, as this requires resetting of local git checkouts.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
$ git fetch upstream-rw

Rebase
$ git rebase upstream-rw/main

A long series of commits

If there are a longer series of related commits, consider a merge instead:

$ git fetch upstream-rw
$ git merge --no-ff upstream-rw/main

Note the --no-ff above. This forces git to make a merge commit, rather than doing a fast-forward, so that these set of
commits branch off trunk then rejoin the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have the right commits:

$ git log --oneline --graph
$ git log -p upstream-rw/main..

The first line above just shows the history in a compact way, with a text representation of the history graph. The second
line shows the log of commits excluding those that can be reached from trunk (upstream-rw/main), and including
those that can be reached from current HEAD (implied with the .. at the end). So, it shows the commits unique to this
branch compared to trunk. The -p option shows the diff for these commits in patch form.

5.5. Workflow for Maintainers 19

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

Push to open pull request

Now you need to push the changes you have made to the code to the open pull request:

$ git push git@github.com:<username>/hermes_nemisis.git HEAD:<name of branch>

You might have to add --force if you rebased instead of adding new commits.

5.5.2 IOssue Milestones and Labels

Current milestone guidelines:

• Only confirmed issues or pull requests that are release critical or for some other reason should be addressed
before a release, should have a milestone. When in doubt about which milestone to use for an issue, do not use
a milestone and ask other the maintainers.

Current labelling guidelines:

• Issues that require fixing in main, but that also are confirmed to apply to supported stable version lines should
be marked with a “Affects Release” label.

• All open issues should have a “Priority <level>”, “Effort <level>” and “Package <level>”, if you are unsure at
what level, pick higher ones just to be safe. If an issue is more of a question or discussion, you can omit these
labels.

• If an issue looks to be straightforward, you should add the “Good first issue” and “Hacktoberfest” label.

• For other labels, you should add them if they fit, like if an issue affects the net submodule, add the “net” label or
if it is a feature request etc.

5.5.3 Updating and Maintaining the Changelog

The changelog will be read by users, so this description should be aimed at users instead of describing internal changes
which are only relevant to the developers.

The current changelog is kept in the file “CHANGELOG.rst” at the root of the repository. You do not need to update
this file as we use towncrier to update our changelog. This is built and embedded into our documentation.

Towncrier will automatically reflow your text, so it will work best if you stick to a single paragraph, but multiple
sentences and links are OK and encouraged. You can install towncrier and then run towncrier --draft if you want
to get a preview of how your change will look in the final release notes. This tool was built by the SunPy community
and they provide a great guide on how to use it.

Instructions on how to write a changelog..

5.5.4 Releases

We have a step by step checklist on the Wiki on how to make a release.

20 Chapter 5. Developer’s Guide

https://pypi.org/project/towncrier/
https://github.com/sunpy/sunpy/blob/main/changelog/README.rst
https://github.com/HERMES-SOC/hermes_core/wiki/Release-Process

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

5.6 Global Settings

We make use of a settings file (<hermes_nemisis>rc). This file contains a number of global settings such as where
files should be downloaded by default or the default format for displaying times. When developing new functionality
check this file and make use of the default values if appropriate or, if needed, define a new value. More information
can be found in Customization and Global Configuration.

5.6. Global Settings 21

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

22 Chapter 5. Developer’s Guide

CHAPTER

SIX

API REFERENCE

6.1 hermes_nemisis Package

6.1.1 Functions

read_file(data_filename) Read a file.

read_file

hermes_nemisis.read_file(data_filename)
Read a file.

Parameters
data_filename (str) – A file to read.

Returns
data (str)

Examples

6.2 hermes_nemisis.calibration.calibration Module

A module for all things calibration.

6.2.1 Functions

process_file(data_filename) This is the entry point for the pipeline processing.
parse_l0_sci_packets(data_filename) Parse a level 0 nemisis binary file containing CCSDS

packets.
l0_sci_data_to_cdf (data, original_filename) Write level 0 nemisis science data to a level 1 cdf file.
calibrate_file(data_filename) Given an input data file, raise it to the next level (e.g.

level 0 to level 1, level 1 to quicklook) it and return a
new file.

get_calibration_file(data_filename[, time]) Given a time, return the appropriate calibration file.
read_calibration_file(calib_filename) Given a calibration, return the calibration structure.

23

https://docs.python.org/3/library/stdtypes.html#str

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

process_file

hermes_nemisis.calibration.calibration.process_file(data_filename: Path)→ list
This is the entry point for the pipeline processing. It runs all of the various processing steps required.

Parameters
data_filename (str) – Fully specificied filename of an input file

Returns
output_filenames (list) – Fully specificied filenames for the output files.

parse_l0_sci_packets

hermes_nemisis.calibration.calibration.parse_l0_sci_packets(data_filename: Path)→ dict
Parse a level 0 nemisis binary file containing CCSDS packets.

Parameters
data_filename (str) – Fully specificied filename

Returns
result (dict) – A dictionary of arrays which includes the ccsds header fields

Examples

>>> import hermes_nemisis.calibration as calib
>>> data_filename = "hermes_MAG_l0_2022339-000000_v0.bin"
>>> data = calib.parse_nemisis_sci_packets(data_filename)

l0_sci_data_to_cdf

hermes_nemisis.calibration.calibration.l0_sci_data_to_cdf(data: dict, original_filename: Path)→
Path

Write level 0 nemisis science data to a level 1 cdf file.

Parameters

• data (dict) – A dictionary of arrays which includes the ccsds header fields

• original_filename (Path) – The Path to the originating file.

Returns
output_filename (Path) – Fully specificied filename of cdf file

Examples

>>> from pathlib import Path
>>> from hermes_core.util.util import parse_science_filename
>>> import hermes_nemisis.calibration as calib
>>> data_filename = Path("hermes_MAG_l0_2022339-000000_v0.bin")
>>> metadata = parse_science_filename(data_filename)
>>> data_packets = calib.parse_l0_sci_packets(data_filename)
>>> cdf_filename = calib.l0_sci_data_to_cdf(data_packets, data_filename)

24 Chapter 6. API Reference

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

calibrate_file

hermes_nemisis.calibration.calibration.calibrate_file(data_filename: Path)→ Path
Given an input data file, raise it to the next level (e.g. level 0 to level 1, level 1 to quicklook) it and return a new
file.

Parameters
data_filename (Path) – Fully specificied filename of the input data file.

Returns
output_filename (Path) – Fully specificied filename of the output file.

Examples

>>> from hermes_nemisis.calibration import calibrate_file
>>> level1_file = calibrate_file('hermes_MAG_l0_2022239-000000_v0.bin')

get_calibration_file

hermes_nemisis.calibration.calibration.get_calibration_file(data_filename: Path, time=None)→
Path

Given a time, return the appropriate calibration file.

Parameters

• data_filename (str) – Fully specificied filename of the non-calibrated file (data level <
2)

• time (Time) –

Returns
calib_filename (str) – Fully specificied filename for the appropriate calibration file.

Examples

read_calibration_file

hermes_nemisis.calibration.calibration.read_calibration_file(calib_filename: Path)
Given a calibration, return the calibration structure.

Parameters
calib_filename (str) – Fully specificied filename of the non-calibrated file (data level < 2)

Returns
output_filename (str) – Fully specificied filename of the appropriate calibration file.

6.2. hermes_nemisis.calibration.calibration Module 25

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

Examples

6.3 hermes_nemisis.io.file_tools Module

This module provides a generic file reader.

6.3.1 Functions

read_file(data_filename) Read a file.

read_file

hermes_nemisis.io.file_tools.read_file(data_filename)
Read a file.

Parameters
data_filename (str) – A file to read.

Returns
data (str)

Examples

26 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str

PYTHON MODULE INDEX

h
hermes_nemisis, 23
hermes_nemisis.calibration.calibration, 23
hermes_nemisis.io.file_tools, 26

27

hermes_nemisis, Release 0.2.1.dev6+gd81fafe

28 Python Module Index

INDEX

C
calibrate_file() (in module her-

mes_nemisis.calibration.calibration), 25

G
get_calibration_file() (in module her-

mes_nemisis.calibration.calibration), 25

H
hermes_nemisis

module, 23
hermes_nemisis.calibration.calibration

module, 23
hermes_nemisis.io.file_tools

module, 26

L
l0_sci_data_to_cdf() (in module her-

mes_nemisis.calibration.calibration), 24

M
module

hermes_nemisis, 23
hermes_nemisis.calibration.calibration,

23
hermes_nemisis.io.file_tools, 26

P
parse_l0_sci_packets() (in module her-

mes_nemisis.calibration.calibration), 24
process_file() (in module her-

mes_nemisis.calibration.calibration), 24

R
read_calibration_file() (in module her-

mes_nemisis.calibration.calibration), 25
read_file() (in module hermes_nemisis), 23
read_file() (in module hermes_nemisis.io.file_tools),

26

29

	Acknowledging this Package
	Citing in Publications

	Release History
	Full Changelog

	Calibration and Measurement Algorithm Document (CMAD)
	Scope
	Related Documentations
	Applicable Documents

	Overview and Background Information
	Science Objectives
	Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) Instrument Description
	Measurement Concept
	Instrument Subsystem Descriptions
	<Subsystem name>
	<Instrument name> Heritage
	Subsystem Heritage
	Algorithm and Calibration Heritage

	Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) Calibration Plan
	Overall Calibration Scheme
	Pre-flight Calibration Plans
	<Subsystem name> Pre-flight Calibrations

	Instrument Description
	In-flight Tracking of Short-Term Changes
	Long-term Absolute Calibration Tracking (Re-Calibration)
	Validation

	Noise Eliminating Magnetometer Instrument in a Small Integrated System (NEMISIS) Measurement Algorithm Description
	Theoretical basis
	Conversion of Instrument Signals to <Measurable units>
	Measurement Equations

	Signal Estimates and Error Analyses for Subsystems
	<Subsystem name> Signal Estimates and Error Analysis

	Preflight Calibration Algorithms
	Appendix A. List of Variable Definitions

	User’s Guide
	A Brief Tour
	Data
	Overview
	Data Description

	Getting Data
	Reading Data
	Calibrating Data

	Customization and Global Configuration
	The configrc file
	Dynamic settings
	A sample configrc file

	Logging system
	Overview

	Developer’s Guide
	Developer Environment
	Coding Standards
	HERMES Instrument Standards

	Testing Guidelines
	Writing tests
	Where to put tests
	doctests
	Bugs Testing

	Documentation Rules
	Overview
	Referring to other code
	Project-specific Rules

	Sphinx
	Usage and Building the documentation
	HTML

	Workflow for Maintainers
	Integrating changes via the web interface (recommended)
	When to remove or combine/squash commits
	When to rebase
	A few commits
	A long series of commits
	Check the history
	Push to open pull request

	IOssue Milestones and Labels
	Updating and Maintaining the Changelog
	Releases

	Global Settings

	API Reference
	hermes_nemisis Package
	Functions
	read_file

	hermes_nemisis.calibration.calibration Module
	Functions
	process_file
	parse_l0_sci_packets
	l0_sci_data_to_cdf
	calibrate_file
	get_calibration_file
	read_calibration_file

	hermes_nemisis.io.file_tools Module
	Functions
	read_file

	Python Module Index
	Index

